

A methodology for estimating the financial gains for employers of facilitating neuro-inclusion in the workplace

Citation: Guyatt HL and Scott, M. (2025). A methodology for estimating the financial gains for employers of facilitating neuro-inclusion in the workplace. Brain in Hand Ltd., August 2025

This paper draws on data collected by Brain in Hand and secondary data from published research articles, to define a methodology for estimating potential financial gains for employers of greater neuroinclusion in the workplace. It describes the methods for producing these predicted financial gains, and indicative outputs from the model to demonstrate possible cost savings for organisations within differing contexts.

You can explore possible cost savings associated with neuroinclusion via [this interactive app.](#)

Executive Summary

Neuroinclusive workplaces relate to measurable work improvements. Modelling indicates that moving from minimal to high neuroinclusion can **increase productivity by 45%, retention by 24%, and reduce long-term sickness absence by 11 days** per employee per year.

The financial return could be substantial. Under our base assumptions, these changes equate to an **average annual gain of £21,404 per neurodivergent employee** (£13,705 conservative). For an organisation with 50 neurodivergent employees, this represents **over £1 million in annual savings.**

Investment in neuroinclusion may offer strong ROI. Employers could invest up to **£4,281 per employee** and still achieve a **400% return on investment.** Even a £7,000 per-employee investment maintains around a **200% ROI.**

Brain in Hand may be a key enabling intervention for these gains. With a **33% reported improvement in productivity**, BiH delivers a high proportion (~73%) of the productivity gains associated with higher levels of neuroinclusion, with associated cost savings.

This model provides a strong foundation but should be interpreted cautiously. The methodology represents a **first step** in quantifying financial gains from neuroinclusion. Results are modelled estimates based on wellbeing–outcome relationships and self-reported data; future research should refine these assumptions and extend to other neurodivergent groups and workplace contexts.

Introduction

There are concerning statistics around the UK workforce, with low levels of productivity and significant numbers of people thinking about leaving their role or being absent due to long term sickness. Britain's healthiest workplace report estimated that the average UK employee lost 50 days of productive time in 2023 (Vitality, 2025) and 39% of UK employees say they're likely to look for a new job in the next 12 months (New Possible, 2025).

There are indications that these negative work outcomes can be more extreme for neurodivergent employees, with studies by Birkbeck in partnership with Neurodiversity in Business reporting that a high proportion of neurodivergent workers feel overwhelmed at work (78% of 1,436 surveyed in 2024 - Birkbeck & Neurodiversity in Business, 2024) and fearing discrimination from management (65% of 990 surveyed in 2022/23 - Birkbeck, University of London & Neurodiversity in Business, 2023). The most recent City and Guild Neurodiversity survey (City & Guilds Foundation & Do-IT Solutions, 2025) found that 41% of neurodivergent employees said challenges at work impacted them on most days, with 51% needing to take time away from work. Most of the 814 employees surveyed had ADHD or were autistic.

The narrative around neuroinclusion in the workplace - "the practice of supporting and valuing employees with different learning, thinking and processing styles" - has been gaining significant momentum over the past few years. This movement is not only a response to the reported challenges being faced by neurodivergent employees, but also a sign of increasing recognition of the benefits of embracing neurodiverse talent for innovation, productivity, and business resilience. The UK government has also recognised the importance of this, launching an independent expert panel in early 2025 aimed at improving employment prospects for neurodivergent individuals (Department for Work and Pensions, 2025).

o better understand the perspectives of employers, Brain in Hand (BiH) in collaboration with Marketiers surveyed 1,000 employers on a range of aspects related to neuroinclusion in their workplace. The employers covered a range of organisational sizes, from across the UK and sectors as diverse as healthcare and the public sector to production and technical services (see Annex 1 for details and key findings - Brain in Hand unpublished data August 2025).

The survey found that there is a strong appetite for changing the workplace environment with half of organisations stating they are eager to become a more neuroinclusive workplace. Of those eager to change, 59% reported lacking the confidence and understanding about neurodivergence and 51% stated they didn't know how to best support neurodivergent employees. Interestingly, these statistics were markedly higher for large organisations (those with 5,000 or more employees) with 86% lacking confidence and 67% not knowing how to best support employees.

One of the reasons for the lack of support could be financial constraints. Of the 1,000 employers interviewed, 45% reported that the budget for reasonable adjustments is lacking. Making a business case for investing in support often requires evidence on the financial gains or return on investment. Despite organisations acknowledging that they are not allowing neurodivergent colleagues to thrive, in our study 77% of employers expressed concern about the missed contribution of neurodivergent talent. Decisionmakers often require the hard data on financial returns to influence them, which may contribute to this discrepancy.

There are disparate pieces of evidence that suggests employers could financially gain from supporting their neurodivergent workforce, but a lack of clarity on precisely what these gains could be. Employees who are unhappy at work and not feeling supported will be costing businesses financially as they are not performing at their best, taking extensive time off work and looking to change their role. All of these negative work outcomes have a cost associated with them. Attempts have been made to estimate what these costs could be with the Institute for Public Policy Research (O'Halloran and Thomas, 2024) suggesting a loss of £103 billion pounds for the UK in 2023 from employee sickness in general and Deloitte UK estimating £51 billion annual employer costs from poor mental health based on an October 2023 YouGov survey of 3,156 UK workers (Deloitte UK, 2024). So far, the financial gains of workplace neuroinclusion have not been formally quantified in the research, beyond some indicative studies on productivity and broader societal impact.

Bringing together our understanding of how a neuroinclusive workplace could positively impact businesses and data from a range of sources, this paper outlines a methodology and the resulting predictions of what employers could gain financially from becoming neuroinclusive.

Methods

Our approach to developing a predictive model on potential financial gains to employers was (1) to focus in on three workplace outcomes which are frequently measured in studies assessing employees and have tangible financial costs associated with them; (2) to review data sources to establish and quantify a pathway from being neuroinclusive (being supportive of neurodivergent employees) and these three work outcomes; and (3) to build these key variables into an interactive model which would enable both sensitivity analysis and employers to explore gains for their specific contexts

Workplace outcomes

The three workplace outcomes utilised in this model are (1) productivity, (2) retention and (3) long-term sickness absence.

(1) **Productivity** relates here to the productivity or performance of the individual employee rather than the productivity or output of the business. Productivity can be measured in a number of ways from self-reported performance to actual output over a specified time point expressed either as a performance score, effective hours worked compared to the optimum, or objective outcome measures such as calls made/patients seen. Given the diversity in how productivity can be expressed, our approach was to establish percentage-based changes in productivity using standardised effect sizes derived from various forms of published coefficients. The output for the model aims to **predict productivity in terms of average productive days gained per person, per year**, to facilitate a direct attribution of financial gain through the valuation of labour time in terms of wage rates.

(2) **Retention** relates to people staying in their role. It is often referred to in its negative form of “staff turnover”. It costs money to replace people so improving retention has financial gains. Retention can be tracked as a statistic for an organisation, but more often in research studies it is assessed in terms of people’s intention to stay, or more commonly intention to leave a role. It is most often a binary (yes/no) or ordinal outcome (likeliness to stay/leave), assessed over a defined time scale – such as the next 6 or 12 months. The output for the model aims to **predict retention in terms of the percentage gain in people staying in their role** to facilitate a direct attribution of financial gain through the average cost of replacing an employee.

(3) **Long-term sickness absence** is being off work for an extended period of time due to sickness. The research studies drawn upon reported long-term sickness absence in terms of absence risk, standardised and expressed as a percentage point change in the risk of having at least one long-term absence episode. The output for the model aims to **predict average days avoided** to facilitate a direct attribution of financial gain through the valuation of labour time in terms of wage rates.

Mediating pathway from support to positive work outcomes

Given the paucity of studies that have directly quantified relationships between neuroinclusion and workplace outcomes, our approach was to predict these through a pathway where there has been sufficient research to facilitate quantifying these effects. It was decided to utilise “wellbeing” for two reasons: firstly, there is a wealth of data on associations between wellbeing and workplace outcomes and secondly, we had recently conducted a survey which collected information on wellbeing and level of support for neurodivergent employees. Wellbeing can be measured in many different ways, from a simple self-reported binary outcome or scored level of wellbeing to a wellbeing metric established from a composite set of questions or a wellbeing specific tool. We undertook a literature review to identify studies that collected information on wellbeing and our three work outcomes. To utilise the range of wellbeing metrics, we standardised changes in wellbeing via a percentile-based approach. In other words, we assessed work outcomes in relation to a 10 percentile increase in wellbeing, based on a research-informed latent distribution of wellbeing in the population. In the recent employee survey where individuals reported both wellbeing and level of support, wellbeing was measured on a five-point scale from very poor to excellent, while perceived level of support was measured on a five-point scale from insufficient to sufficient.

Interactive model

The aim was to keep the model simple and transparent, with key variables given explicitly in a form that would be relatable and understandable to employers and other researchers who might want to explore how the financial gain predictions may change with changes in key parameters across differing contexts. In this way, we built out the model so that the financial gains could be explored for different numbers of neurodivergent employees in a business, different wage rates and staff replacement costs.

Results

The model

The basic model was developed to output financial gains from changing a workplace environment to being more neuroinclusive. Assumptions related to the average daily wage and the cost of replacing employees when they leave. The initial output is average total savings per person per year which can be upscaled to a given workplace context by inputting the number of neurodivergent employees in that workplace. There are four components to the model.

(1) The wellbeing effect

The association between improved wellbeing as a result of a supportive, neuroinclusive workplace is modelled as an uplift factor. Level of support (neuroinclusion) is operationalised at three levels – minimal, moderate, and high neuroinclusion. The wellbeing uplift attributable to support (Δ Wellbeing) is a function of the calculated percentile difference in the wellbeing distribution between those with one level of support (percentileX) compared to those with another level of support (percentileY). This is scaled to a 10 percentile change in wellbeing for the multipliers below.

$$\Delta\text{Wellbeing} = (\text{percentileX} - \text{percentileY}) / 10$$

(2) Productive days gained

The productive days gained per employee over a given time period is calculated from the percentage gain in productivity, which is a function of the wellbeing uplift and a productivity multiplier (per 10 pp).

Productive days gained per person = (% productivity gain) x working days
 Where % productivity gain = Δ Wellbeing x productivity multiplier (per 10pp)

(3) Retention gain

The retention gain is outputted as a percentage and is a function of the wellbeing uplift and the retention multiplier (per 10 pp).

$$\% \text{ retention gain} = \Delta\text{Wellbeing} \times \text{retention multiplier (per 10pp)}$$

(4) Long-term sickness absence days avoided

The long-term sickness absence days avoided is a function of the wellbeing uplift, the long-term sickness absence multiplier (per 10 pp) and the average long-term sickness absence duration.

$$\text{Days avoided} = \Delta\text{Wellbeing} \times \text{long-term sickness absence multiplier (risk multiplier (per 10pp))} \times \text{average duration of long-term sickness absence (duration multiplier)}$$

(5) Financial gains

The average financial savings per person per year is calculated from the value of a) the labour time for days gained from long-term sickness days avoided; b) productive days gained; c) the percentage gain in retention and the average cost per leaver.

Calculating the work outcome multipliers

The impact of wellbeing on workplace outcomes was quantified by deriving multipliers from published studies reporting associations with productivity, long-term sickness absence, and retention. A 10 percentile increase in wellbeing was modelled, using SD-based conversions (0.44 SD or a more conservative 0.28 SD). Effect sizes were standardised and transformed to reflect percentage changes in outcomes. For continuous outcomes, effects were expressed as percentage changes in the average level of the outcome. For binary outcomes (e.g., absence risk), changes were expressed as percentage point changes in the probability of experiencing the event.

Final average multipliers per 10 percentile increase in wellbeing were:

- Productivity: 10.5%, 6.7% (conservative)
- Retention: 5.6%, 3.6% (conservative)
- Absence risk: -11.6%, -7.7% (conservative)

For example, in our data, a 10 percentile increase in wellbeing corresponds to an approximate **8–12% increase in raw wellbeing scores**, depending on the portion of the distribution affected. This level of change is associated with a **10.5% improvement in productivity**, based on optimistic estimates from published effect sizes.

Further details of this approach, including all the studies drawn upon and the analyses from which coefficients for multipliers were calculated, are available in Annex 2.

Calculating the wellbeing effect

The wellbeing uplift attributable to support (Δ Wellbeing) is calculated from primary data collected in March 2024. BiH commissioned a survey of neurodivergent employees to better understand their experience of support in the workplace and the impact on this on their wellbeing and other metrics. A total of 646 respondents were autistic and/or ADHD and data is available on the level of support sufficiency (How sufficient, or insufficient, is the support provided by your employer for your neurodivergent needs?) and their wellbeing (How would you rate your overall wellbeing?). There is a clear relationship between level of support and wellbeing, with those with better support experiencing better wellbeing (see Figure 1). The numerical data and sampling approach is provided in Annex 3.

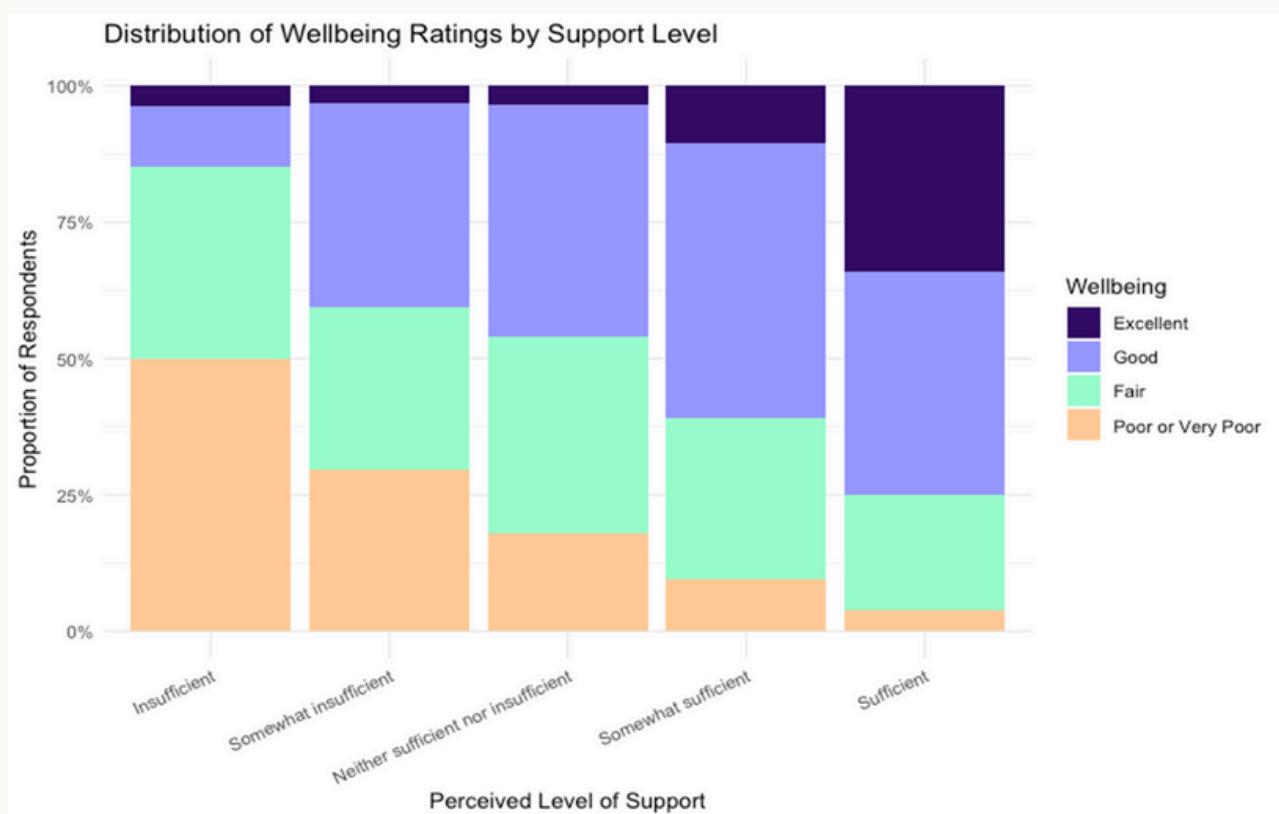


Figure 1. The distribution of self-reported wellbeing ratings by perceived level of support for autistic and/or ADHD employees surveyed in March 2024 (n=646) (Brain in Hand, unpublished data March 2024)

The data on the changes in wellbeing associated with higher levels of support were analysed to enable the 10-percentile shift in wellbeing due to being supported (assumed here to indicate neuroinclusion) to be quantified. Weighted mean wellbeing scores were calculated for the key support groups (insufficient support; somewhat insufficient OR neither sufficient nor insufficient; sufficient) using the full distribution of wellbeing responses. The difference in weighted mean wellbeing between support level groups was then translated into a percentile shift on the overall wellbeing distribution. This yielded the following percentile shifts in wellbeing between different levels of neuroinclusion:

1. Minimal neuroinclusion - 'insufficient' support
2. Moderate neuroinclusion - 'somewhat insufficient' OR 'neither sufficient nor insufficient'
3. High neuroinclusion - 'sufficient' support

When mapped to the percentile-based modelling approach, this produces the following percentile changes in wellbeing with a shift between neuroinclusion levels. To align with our modelling framework — which expresses outcome change per 10 percentile shift in wellbeing — this value was divided by 10 to produce the estimated change in each outcome per 10 percentile increase in wellbeing attributable to higher perceived support. These are also translated to raw percentage increases in wellbeing, based on the average raw wellbeing values for each group (Table 1).

Neuroinclusion change	Percentile change in wellbeing	Wellbeing Multiplier	Raw percentage increase in
Minimal - Moderate	+21.5 pp	2.15	21%
Moderate - High	+31.9pp	3.19	27%
Minimal - High	+43.1pp	4.31	54%

Table 1. The wellbeing metrics associated with three different changes in neuroinclusion. Providing a neuroinclusive workplace could increase autistic or ADHD employee wellbeing by 54%, or 1.54 fold.

Model parameters related to intensity of effect and unit costs

To translate the percentage gain in productivity to actual days we needed to make some assumptions about the number of working days per year. The average UK worker is contracted to work 253 days per year (in 2025 which is a standard 365-day year). With annual leave ([ET employees entitled to min 28 days of paid leave per year](#)) the number of days actually spent at work is closer to 225. In the base case **we assumed 225 working days per year**.

The number of long-term sickness days avoided requires an assumption around the average length of an absence episode (duration multiplier). In the base case **we assume this is 21.1 days from the average time someone spends off work due to an episode related to stress, anxiety or depression** (Health and Safety Executive, 2024).

The costs associated with someone leaving an organisation is heavily dependent on the salary and role of the employee. When taking costs such as recruitment fees, productivity and team impacts into account, [CultureAmp](#) estimates the cost of replacing an employee starts at 30 percent of an average employee's salary, rising to 200 percent for top performers. In the base case taking the average salary in the UK in 2024 of £37,430 (Office for National Statistics, 2024) and a 30% replacement cost, the **base case applies a cost per employee of leaving of £11,229**.

The monetary value associated with gaining days from increased productivity and long term absences avoided are usually estimated by applying a labour value to those days. The value of labour can vary by sector and organisation. In the base case we assume an average salary of £37,430 so with an assumed 225 working days a year **this is a daily wage rate of £166**.

Work outcome and financial gains (model outputs)

Table 2 summarises the main workplace outcomes of the model in the base case for three shifts in neuroinclusion and both a standard and conservative set of multipliers.

	Neuroinclusion shift					
	Minimal to Moderate		Moderate to High		Minimal to High	
Calculation	Standard multipliers	Conservative multipliers	Standard multipliers	Conservative multipliers	Standard multipliers	Conservative multipliers
	% Productivity Gain	22%	14%	33%	21%	45%
Productive Days Gained	51 days	32 days	75 days	48 days	102 days	65 days
% Increased Intention to stay	12%	8%	18%	11%	24%	16%
Yearly Days of Absence Avoided	5 days	3 days	8 days	5 days	11 days	7 days

Table 2. Changes in workplace outcomes from shifts in neuroinclusion.

Based on these, a neuroinclusive workplace could (assuming a shift from Minimal to High neuroinclusion):

- Increase autistic or ADHD employee productivity by 45% or result in 102 days gained each year. A conservative estimate would be 29% (65 days).
- Increase autistic or ADHD employee retention by 24%. A conservative estimate would be 16%.
- Avoid an average 11 days of long-term sickness absence per neurodivergent employee each year. A conservative estimate would be 7 days.

This could translate into an average financial gain per neurodivergent employee of £21,404 (conservative estimate would be £13,705).

These are the averages per employee - the greater the number of neurodivergent employees in a workplace, the higher the total savings.

For example, an organisation with 50 neurodivergent people could potentially gain more than £1 million a year by becoming neuroinclusive (nearly £700,000 as a more conservative estimate). Most of this gain (79%) would be from increased productivity.

The model was intentionally developed in a format that would enable exploration of changes in key parameters related to different contexts or as a form of sensitivity analysis to test the robustness of some assumptions.

Four parameters were considered fixed in the model, and these were the work outcome multipliers and the wellbeing uplift, noting that a standard and conservative estimate of the work outcome multipliers were explored. Four parameters are related to the intensity of these effects – daily wage, staff replacement costs, sickness absence duration and number of working days per year and can be specific to an employer and are explored here as a form of sensitivity analysis.

Finally, four parameters relate to inputs that could be provided by employers looking to better understand the impact for their context and these are total number of employees, percent of workforce that are autistic/ADHD, current level of neuroinclusion (minimal or moderate) and target level of neuroinclusion (moderate or high). Table 3 summarises all these parameters and the values explored in this paper.

Exploring changes in the four parameters related to the intensity of these effects – daily wage, staff replacement costs, sickness absence duration and number of working days per year – as a form of sensitivity analysis demonstrates that the **potential financial savings for an employer could be higher than £50,000 per employee** for settings where wages are relatively high.

In an organisation where **average wages are £84,375 per year** rather than the base case assumption of £37,430 per year, the **financial gain per employee per year of becoming neuroinclusive could rise to £48,249**. This would result from an increase in savings associated with productivity gains of £21,245 and an increase in retention gains of £3,399. If a 50% leaver cost was applied rather than the 30% (a logical argument given the percentage of costs rises with the salary) then the average cost savings per employee per year would be **£52,322**. An annual salary of £84,375 reflects the application of £46.92 value of an output per hour worked by the ONS (Office for National Statistics, 2023) and is comparable to many tech roles.

In an organisation where average sickness durations are much higher than the 21 days used in the base case, the financial gain will be higher, but because absenteeism risk multiplier is quite low, the effects are small. For example, if the average duration of sickness absence is increased to 56 days then the total gain increases by £2,903 to £24,307 in the base case of £37,430 annual salary, **rising to £54,793** for an annual salary of £84,375.

Parameter type	Parameter	Values
Fixed Parameters	Productivity multiplier (per 10 pp)	Standard value is 10.5 and conservative value is 6.7
	Retention multiplier (per 10 pp)	Standard value is 5.6 and conservative value is 3.6
	Long-term sickness multiplier (per 10 pp)	Standard value is 11.6 and conservative value is 7.7
	Wellbeing uplift	Minimal to high is 4.31; minimal to moderate is 2.15 and moderate to high is 3.19
Optional Variables	Annual salary	£37,430 in the base case, sensitivity analysis exploring £84,375 a year
	Staff replacement costs	£11,229 in the base case, sensitivity analysis exploring £25,313 and £42,188 (30% and 50% of £84,375 annual salary)
	Sickness absence duration	21.1 days in the base case, sensitivity analysis exploring 56 days (0.25 of 225 working days)
	Number of working days per year	225 days in the base case, sensitivity analysis exploring 210 days
Input variables	Total number of employees	This is the number of employees in the organisation
	Percent of workforce that are autistic/ADHD	This is the percentage of the organisation that are autistic/ADHD. In some organisations this is as high as 50% but for most this will range between 5 and 25%.
	Current level of neuroinclusion (minimal or moderate)	The current situation for the organisation where minimal is defined as 'limited understanding or action around neurodiversity. Workplace adjustments are rare or reactive. Employees often feel unsupported or misunderstood'. Moderate neuroinclusion is defined as 'some awareness and support structures exist, but not consistently or systematically applied. Support may depend on individual managers or ad hoc initiatives.'
	Target level of neuroinclusion (moderate or high)	Where the organisation is hoping to get to where high is defined as 'proactive, embedded support culture where neurodivergent employees are understood, supported, and valued. Adjustments are expected and normalised.'

Table 3. A summary of the model parameters, their values and exploration as a form of sensitivity analysis

The above calculations were based on the standard multiplier values, if the more conservative values were used then the financial gains for becoming more neuroinclusive could be £33,537 at the higher average salary of £84,375 and a 50% leaver cost.

The above calculations also assume a shift from minimal to fully neuroinclusive. If there is already a moderate level of neuroinclusion, the shift to fully neuroinclusive would have smaller annual financial gains per employee but in the base case, this would still be significant at £15,842 (£10,151 as a conservative estimate) and £35,697 (£22,882 as a conservative estimate) with a higher salary.

In terms of investment potential and returns on investment, the model suggests **an employer could invest up to £4,281 per autistic/ADHD employee per year to make the workplace neuroinclusive and still have an ROI of 4** in the base case of an average financial gain per neurodivergent employee of £21,404. A 200% return on investment would mean £7,132 per autistic/ADHD employee is available to spend on making the organisation more neuroinclusive.

Discussion

Summary of Findings

This report provides to the best of our knowledge the first attempt to model the financial impact of a neuroinclusive workplace from the perspective of the employer. It was primarily developed to better understand and articulate the potential incentive for employers to adopt a neuroinclusive environment for their employees. The model was intentionally developed to be user-friendly with clearly identifiable parameters and a format that would lend itself to an interactive model where employers can explore themselves the impact under their specific contexts.

Our model suggests that a neuroinclusive workplace environment could increase productivity by 45%, retention by 24% and avoid 11 days of long-term absence per employee per year for those that are autistic and/or have ADHD. The financial implications for organisations can be significant with an estimated annual financial gain per employee of £21,404 based on the average UK salary of £37,430. An organisation with 50 employees who are autistic or have ADHD could gain more than a million pounds each year. To do this they would need to invest - given these gains, our model suggests that annual investments of up to £4,281 per employee would still represent a 400% return on investment.

A 200% return on investment would mean more than £7,000 per employee could be spent on making the organisation more neuroinclusive. To put this into context, Genius Within provides a [E-learning course](#) on “Neurodiversity Awareness for the workplace” at £200 per person and a “Managing Neurodiversity at Work” for managers at £500 per person; and ADHD UK provides employer and employee [ADHD Coaching services](#) at a cost of £2,950 per package. The lack of training in neuroinclusion was highlighted as a concern for 43% of employers recently surveyed by BiH (BiH, unpublished data).

Sense-checking the findings of the model with actual impact data from providing support to neurodivergent people in the work is challenging. A recent survey with over 4,000 employees across the UK found that those with a comprehensive package of health and wellbeing support are 34% less likely to be looking leave their role and 35% more likely to report being happy at work than those without access. Further, 80% of those surveyed reported that they are more productive at work when they are feeling healthy and happy (WPI Economics, 2023). We have not been able to identify similar metrics for support for autistic/people with ADHD.

Brain in Hand as a Tool for Neuroinclusion

Brain in Hand integrates 24/7 human support with personalised coaching and digital tools to enable neurodivergent individuals to achieve more in their life, work and study. The research team at Brain in Hand have been attempting to capture the impact of using BiH on workplace metrics both through user perceptions on these changes as well as more robust cohort studies tracking change. Surveys of Brain in Hand users indicate positive changes in perceived productivity at work, sickness absence and intention to stay in their role. Of the 360 users who are in employment and have responded to surveys, 33% (119) reported that BiH helped them be more productive at work, 16% (57) reported that they have had ‘fewer days off of work’ and 26% (92) reported that they are ‘more likely to stay in their role’ since getting BiH.

Some users were also able to provide data on the intensity of these changes with 20% (6/32) of people noting productivity changes of more than 50% and half of those reporting days of absence avoided in excess of 2 weeks (12/19) (Brain in hand, unpublished data, June 2025). More robust evidence comes from a longitudinal cohort study following 16 people in fulltime employment which demonstrated a significant increase in absolute productivity as measured by self-reported work performance on a 0-100 scale, between baseline ($M = 54.38$, $SD = 24.49$; median = 65) and 6-months ($M = 72.50$, $SD = 14.83$, median = 70; $V = 2.2$, $p = .015$) which aligns to an 33.3% average increase in relative productivity (Scott et al., 2025)[HG1]. We have recently been funded by Small Business Research Initiative to undertake a large cohort study of BiH users in the workplace with which we explore workplace outcomes in more detail and findings expected in early 2026.

With a 33% reported improvement in productivity, BiH delivers approximately 73% of the gains associated with a shift from minimal to high levels of neuroinclusion (estimated at 45%), highlighting its potential as a key enabling intervention.

Further Considerations and Limitations

It is likely that the financial gains provided by the model are conservative for a number of reasons. Firstly, there is evidence suggesting that once supported neurodivergent people could be more productive and more committed than neuro-typical people (see reviews by Guyatt (2025) and Griffiths et al (2020). The implication for employers being that creating a neuroinclusive workplace would enable existing neurodivergent employees to outperform their neurotypical colleagues and also attract more neurodivergent people so that the effects are multiplied.

Secondly, there is anecdotal evidence that there are other financial gains for employers from better supporting neurodivergent employees beyond their individual productivity, retention and reduced absenteeism. For example, a key concern raised by employers during recent in-depth interviews conducted by Brain in Hand was the time that managers spent supporting neurodivergent colleagues in their team. In a recent survey, 75% of 1000 employers interviewed were concerned about line managers being overwhelmed (BiH, unpublished data, August 2025). releasing this time by providing a more neuroinclusive workplace could increase the productivity of the line manager and potentially the rest of the team.

Finally, grievances expressed by employees which could lead to again management time but also expensive legal costs. It has been suggested by various online sources that tribunals where neurodiversity was cited as a factor in alleged discrimination is on the rise, with People Management reporting a 750% increase in decisions involving ADHD and a doubling of autism-related claims since 2020.

Furthermore, the City & Guilds Neurodiversity Report 2025 suggests that 1 in 10 organisations have faced tribunal or legal action related to neurodiversity conflicts (City & Guilds Foundation & Do-IT Solutions, 2025). The costs associated with discrimination tribunals can vary widely but can typically exceed £20,000 especially when expert testimony or medical evidence is necessary. In a recent survey, 78% of 1000 employers interviewed were concerned about risk of legal action or discrimination claims (BiH, unpublished data, August 2025).

The model was constructed to capture financial gains to the employer. Extending the scope to include the perspective of the individual, the government or society as a whole, would significantly increase the savings by adding healthcare, welfare, taxation, legal, social, and intergenerational dimensions to the analysis. These individual additional cost savings could include increases in income tax receipts and reduced benefit claims from retention (government perspective), aggregate GDP impact from tapping into underutilised talent pools (societal perspective), Lost income due to underemployment, discrimination, or barriers to promotion (opportunity costs from an individual perspective) and many more.

Any modelling approach is based on assumptions and will therefore have its limitations. **The following assumptions were made:**

- Changes in productivity are causally linked to support and wellbeing improvements, although the data were primarily from cross-sectional data. Longitudinal or case-control data would have been preferable, but it is not currently available for these outcomes.
- The average changes were applied equally across the population which could mask variability. A second iteration of the model could account for this heterogeneity by incorporating individual-level predictors (e.g., baseline wellbeing, support needs, job role) and allowing outcome effects to vary accordingly. For example, random intercepts or slopes could be used to estimate how the relationship between wellbeing and outcomes differs across subgroups. Alternatively, stratified multiplier models could be developed for employees with different baseline characteristics or support profiles. This may be particularly relevant for neurodivergent employees where we have observed for example wide variations in reported durations of absenteeism and improved productivity.
- Wellbeing was the only driver of work outcome changes, when there are other possible mechanisms such as employee engagement, manager or colleague support, and other exogenous factors influencing outcomes such as workload, organisational change, or broader economic pressures. A second iteration could explore these effects.
- Being supported was equated to a neuroinclusive workplace, when there are other dimensions to neuroinclusion such as fostering a general culture of acceptance, ensuring managers and other staff members are trained on neuroinclusion to offer adaptive and flexible support, and ensuring job design is structured in a way that aligns with employee strengths/avoids unnecessary stressors.
- Turnover intention was equated to actual turnover. While the turnover multiplier was constructed with cautious assumptions (e.g., using a single case of long-term absence as the base case assumption) to avoid overestimating effects, future work could explicitly model the relationship between turnover intention and actual turnover.

Despite its limitations, most of which can be explored in further iterations, the model demonstrates some real strengths. Firstly, the methodology takes a wealth of quite varied and complex data and transforms them into a format that enables them to be utilised in a simple model that links support to workplace outcomes through changes in wellbeing. This required some innovative thinking and exploration in how existing data could best be utilised. The model is also established with key variables given explicitly so that changes in these can be explored as a form of sensitivity analysis or across different workplace contexts. **To support in this exploration further, we have developed an interactive app of the model that is freely available via this link.**

References

Bellet, C. S., De Neve, J. E., & Ward, G. (2024). Does employee happiness have an impact on productivity?. *Management science*, 70(3), 1656-1679.

Bertilsson, M., Vaez, M., Waern, M., Ahlborg Jr, G., & Hensing, G. (2015). A prospective study on self-assessed mental well-being and work capacity as determinants of all-cause sickness absence. *Journal of occupational rehabilitation*, 25(1), 52-64.

Birkbeck, University of London, & Neurodiversity in Business. (2023). Neurodiversity at work: Demand, supply and a gap analysis [\[PDF\]](#). Birkbeck Institutional Research Online.

Birkbeck, University of London, & Neurodiversity in Business. (2024). Neurodiversity in Business and Work: Research Report 2024 [\[PDF\]](#). Retrieved from <https://www.neurodiversityinbusiness.org/wp-content/uploads/2024-09-30-Neurodiversity-in-Business-and-Birbeck-University-Research.pdf>

Boles, M., Pelletier, B., & Lynch, W. (2004). The relationship between health risks and work productivity. *Journal of occupational and environmental medicine*, 46(7), 737-745.

Bryan, M. L., Bryce, A. M., & Roberts, J. (2021). The effect of mental and physical health problems on sickness absence. *The European journal of health economics*, 22(9), 1519-1533.

Chen, X., Al Mamun, A., Hoque, M. E., Hussain, W. M. H. W., & Yang, Q. (2023). Work design, employee well-being, and retention intention: a case study of China's young workforce. *Helijon*, 9(5).

City & Guilds Foundation, & Do-IT Solutions. (2025). City & Guilds Neurodiversity Index Report 2025 [\[FlipBook\]](#). City & Guilds Foundation. <https://77f20764.flowpaper.com/CityandGuildsNeurodiversityIndexReport2025/>

Colin-Chevalier, R., Pereira, B., Dewavrin, S., Cornet, T., Baker, J. S., & Dutheil, F. (2025). Psychosocial well-being index and sick leave in the workplace: a structural equation modeling of Wittyfit data. *Frontiers in Psychology*, 16, 1385708.

Deloitte UK. (2024, May). Mental health and employers: The case for employers to invest in supporting working parents and a mentally healthy workplace [\[PDF\]](#). Deloitte UK. Retrieved from <https://healthyworkcompany.com/wp-content/uploads/2024/08/deloitte-uk-mental-health-report-2024-final-new.pdf>

Department for Work and Pensions. (2025, February 13). Employment prospects for neurodiverse people set to be boosted with launch of new expert panel. GOV.UK. <https://www.gov.uk/government/news/employment-prospects-for-neurodiverse-people-set-to-be-boosted-with-launch-of-new-expert-panel>

References

Griffiths, A. J., Hanson, A. H., Giannantonio, C. M., Mathur, S. K., Hyde, K., and Linstead, E. (2020). Developing employment environments where individuals with ASD thrive: Using machine learning to explore employer policies and practices. *Brain Sciences*, 10(9), 632.

Guyatt, H. (2025, February). How Brain in Hand improves wellbeing and productivity for Autistic and ADHD employees [PDF]. Brain in Hand Ltd. Retrieved from <https://new.braininhand.co.uk/media/rotcav01/final-research-paper-how-brain-in-hand-improves-wellbeing-and-productivity-for-autistic-and-adhd-employees.pdf>

Health and Safety Executive. (2024). Working days lost in Great Britain — Stress, depression or anxiety accounted for an average of 21.1 days per case [Labour Force Survey data]. Health and Safety Executive. Retrieved from <https://www.hse.gov.uk/statistics/dayslost.htm>

Ismail, H., & Warrak, A. (2019). The impact of employee well-being on employee retention. *International Journal of Business and Management Invention*, 8(12), 33-37.

New Possible. (2025, January 21). What Workers Want Survey 2025 findings. Retrieved from [newpossible.io]

Office for National Statistics. (2023, January 11). International comparisons of UK productivity (ICP), final estimates: 2021 [Statistical bulletin, PDF]. ONS. Retrieved from <https://www.ons.gov.uk/economy/economicoutputandproductivity/productivitymeasures/bulletins/internationalcomparisonsofproductivityfinalestimates/2021/pdf>

Office for National Statistics. (2024, October 29). Employee earnings in the UK: 2024 [Statistical bulletin, Annual Survey of Hours and Earnings]. Retrieved from <https://www.ons.gov.uk/peopleinwork/earningsandworkinghours/bulletins/annualsurveyofhoursandearnings/2024>

O'Halloran, J. and Thomas, C. (2024, July 31). Healthy industry, prosperous economy [PDF]. Institute for Public Policy Research. [Retrieved from IPPR website](#)

Rothbard, N. P., & Wilk, S. L. (2011). Waking up on the right or wrong side of the bed: Start-of-workday mood, work events, employee affect, and performance. *Academy of Management Journal*, 54(5), 959-980.

Powell, M., Dawson, J., Topakas, A., Durose, J. and Fewtrell C. (2104). Staff satisfaction and organisational performance: evidence from a longitudinal secondary analysis of the NHS staff survey and outcome data. *Health Ser Deliv Res* 2 (50).

Scott, M, Guyatt, H., and Jones, A., (2025). Changes in Neurodivergent Employees' Wellbeing and Workplace Outcomes Over Time with use of Digital Support Tool Brain in Hand – A Mixed-Methods Explorative Study. *Disability and Rehabilitation* [under review].

References

TSears, L. E., Shi, Y., Coberley, C. R., & Pope, J. E. (2013). Overall well-being as a predictor of health care, productivity, and retention outcomes in a large employer. *Population health management*, 16(6), 397-405.

Staw, B. M., & Barsade, S. G. (1993). Affect and managerial performance: A test of the sadder-but-wiser vs. happier-and-smarter hypotheses. *Administrative science quarterly*, 304-331.

Vitality. (2025). 10 years of Britain's Healthiest Workplace: The changing face of the UK at work [PDF]. Vitality.

WPI Economics. (2023, November). Health, happiness and productivity: Supporting the wellbeing of Britain's workers and the growth of the economy [PDF]. Retrieved from <https://www.unum.co.uk/docs/Health-Happiness-Productivity.pdf>

This report should be referenced as

Citation: Guyatt HL and Scott, M. (2025). A methodology for estimating the financial gains for employers of facilitating neuro-inclusion in the workplace. Brain in Hand Ltd., August 2025.

Annex 1. Details of the Employer survey conducted in August 2025

The Brain in Hand employer survey (Brain in Hand, unpublished data, August 2025) was conducted by PR company Markettiers. They recruited 1,000 HR professionals in the UK from a range of organisational sizes and sectors. Participants were recruited via an online access panel between 13th – 15th of August 2025 and they all received the survey via email and completed it online. The survey lasted approximately 20 minutes and participants received an incentive for taking part (points for prizes, cash, charity donations, loyalty schemes or air miles).

Data from this survey for the questions included in the present paper are outlined in Table A1 and Table A2 below.

Table A1. Brain in Hand Employer Survey Response Data – Agreement with Statements

	Our organisation is eager to become a more neuroinclusive workplace	There is insufficient budget in our organisation for reasonable adjustments	There is insufficient training in our organisation on neuroinclusion
Strongly Agree	22.7% (226/997)	19.4% (193/997)	15.1% (151/997)
Somewhat Agree	27.2% (271/997)	25.2% (251/997)	27.8% (277/997)
Neither Agree nor Disagree	21.3% (212/997)	19.2% (191/997)	22.1% (220/997)
Somewhat Disagree	14.6% (146/997)	18.2% (181/997)	20.6% (205/997)
Strongly Disagree	14.2% (142/997)	18.2% (181/997)	14.4% (144/997)

Annex 1. Details of the Employer survey conducted in August 2025

Table A2. Brain in Hand Employer Survey Response Data – Concerns

	Missed contribution of neurodivergent talent	Risk of legal action or discrimination claims	Line managers feeling overwhelmed by the complexity of supporting neurodivergent staff
Very Concerned	37% (369/997)	37% (369/997)	36% (359/997)
Somewhat Concerned	39.4% (393/997)	40.5% (404/997)	39.1% (390/997)
Not Very Concerned	18.2% (181/997)	17.5% (174/997)	17.8% (177/997)
Not Concerned at All	5.4% (54/997)	5% (50/997)	7.1% (71/997)

Annex 2. Data sources and analysis for work outcome multipliers

The workplace outcome multipliers were derived from secondary data obtained through targeted literature searches examining associations between wellbeing and three core workplace outcomes: productivity, long-term sickness absence, and retention.

Standardisation and Modelling Assumptions

To harmonise effect sizes across studies using different wellbeing metrics (i.e., latent wellbeing constructs, Likert-type scales, or continuous indices), we applied a percentile-based standardisation approach. Specifically, we modelled the impact of a 10 percentile point increase in wellbeing, operationalised as a 0.44 SD shift (e.g., 10th → 20th or 80th → 90th percentile), with a 0.28 SD shift explored as a more conservative estimate (equivalent to a move from the 50th to 60th percentile).

Annex 2. Data sources and analysis for work outcome multipliers

We assumed that the latent construct of wellbeing followed an approximately normal distribution (consistent with past research; e.g., Tennant et al., 2007; Aarø et al., 2025), enabling the conversion of percentile shifts into standard deviation (SD) units. When studies reported SDs for the wellbeing variable, these were used directly. Otherwise, we applied a default SD of 15, based on the approximate midpoint of SD values observed in population norms for validated wellbeing measures such as the IWBS, WHO-5, and WEMWBS (Aarø et al., 2025; Omani-Samani et al., 2019; Shi et al., 2013). This standardisation allowed us to interpret effects relative to the latent distribution of wellbeing, rather than the specific measurement scale.

Effect Size Extraction and Transformation

From each eligible study, we extracted either:

- Standardised coefficients (β): Multiplied directly by the wellbeing SD shift to estimate the outcome SD change.
- Unstandardised coefficients (B): SD-based wellbeing shifts were converted to raw score changes, multiplied by B, and expressed as a percentage of the outcome's mean.
- Effect sizes from group comparisons (Cohen's d): Where regression coefficients were unavailable, Cohen's d was calculated from reported means and SDs, converted to a correlation coefficient (r) using:

$$r = d/\sqrt{d^2 + 4}$$

This r value was then treated as a standardised coefficient and scaled accordingly.

- **Binary wellbeing indicators (e.g., high/low wellbeing):** Treated as reflecting an approximately 2 SD contrast across the wellbeing distribution. These were scaled to reflect a 0.28 or 0.44 SD shift by dividing the reported effect by 7.14 (2/0.28) or 4.55 (2/0.44), respectively.

All effects were ultimately expressed as percentage changes in the outcome (expressed as a proportion within equations):

- For continuous outcomes, wellbeing effects were applied to modelled SD-based shifts, and the resulting change was expressed as a percentage of the average level of the outcome (% increase in productivity). This allowed for consistent interpretation across studies, regardless of the original outcome scale.
- For binary outcomes such as long-term sickness absence, we focused on the risk of experiencing at least one absence event over a year (considered a conservative estimate). Where studies reported logistic regression results (e.g., odds ratios or logit coefficients), we scaled the effects to reflect a 10 percentile increase in wellbeing and expressed the result as a percentage point change in absence risk.

Annex 2. Data sources and analysis for work outcome multipliers

Final Multiplier Estimates

- Productivity: 5 studies (1993–2023) (see Table A3)

Multiplier = 0.067 (conservative), 0.105 (optimistic).

Individual estimates ranged from 0.038 to 0.083 (conservative), and 0.059 to 0.130 (optimistic).

- Retention: 4 studies (2013–2023) (see Table A4)

Multiplier = 0.036 (conservative), 0.056 (optimistic).

Individual estimates ranged from 0.021 to 0.059 (conservative), and 0.033 to 0.092 (optimistic).

- Absence Risk: 3 studies (2015–2025) (see Table A5)

Multiplier = 0.0773 (conservative), 0.116 (optimistic).

Individual estimates ranged from 0.0365 to 0.139 (conservative), and 0.055 to 0.219 (optimistic).

Table A2. Brain in Hand Employer Survey Response Data – Concerns

Study	Original Paper Outcome	Standardised outcome of 10 percentile increase in wellbeing		
		Conservative (0.28 SD)	Optimistic (0.44 SD)	Detailed analysis
Rothbard & Wilk (2011)	Productivity = calls/hour; wellbeing = current level of negative affect (average of 1-5 scale responses for 4 negative emotions)	↑ 7.9%	↑ 12.4%	Linear regression: 1 unit increase in negative affect (wellbeing proxy) = -6.28 fewer calls per hour.
Staw & Barsade (1993)	Productivity = peer-rated performance; wellbeing = standardised measure of current level of positive affect (standardised average of three different metrics)	↑ 8.3%	↑ 13.0%	Analysis of Variance: Low/medium affect group mean = 3.18 (SD = 1.35); high affect group mean = 3.98 (SD = 1.23) - Cohen's D = 0.62
Boles et al. (2004)	Productivity = productive hours lost at work; wellbeing = binary variable relating to 'lack of emotional fulfilment'	↑ 8.2%	↑ 12.9%	Logistic regression: Odds ratio of 1.928 - increased odds of lost productive hours for those with lack of emotional fulfilment
Bellett et al. (2023)	Productivity = sales/week; wellbeing = happiness (0-10 scale)	↑ 3.8%	↑ 5.9%	Poisson regression: One-point increase in happiness = marginal effect of 12% within-person increase in productivity (sales/week)
Sears et al. (2013)	Productivity = 0-100 self-rated level of impaired work performance; wellbeing = 0-100 scale from 6 wellbeing sub-domains	↑ 5.4%	↑ 8.5%	Linear regression: Unstandardised coefficient of -0.45 (lower scores = higher productivity), per unit increase in wellbeing.
Productivity multiplier (if we remove meta-analysis figs)		6.70%	10.50%	

Table A4. Retention multiplier

		Standardised outcome of 10 percentile increase in wellbeing		
Study	Original Paper Outcome	Conservative (0.28 SD)	Optimistic (0.44 SD)	Detailed analysis
Sears et al. (2013)	Turnover intention = reverse of intention to stay (0-100 scale); wellbeing = 0-100 scale from 6 wellbeing sub-domains	↓ 2.1%	↓ 3.3%	Linear regression: unstandardised coefficient of -0.35 for effect of wellbeing on turnover intention
Powell et al. (2014)	Turnover Intention (subjective 1-5 likert); wellbeing = proxy (impact of health and wellbeing on ability to perform)	↓ 2.9%	↓ 4.6%	Linear regression: unstandardised coefficient of -0.36 for effect of wellbeing on turnover intention
Chen et al. (2023)	Turnover Intention = latent variable; wellbeing = latent variable	↓ 3.4%	↓ 5.3%	Structural equation model: standardised coefficient of -0.48SDs for effect of latent wellbeing variable on latent turnover intent variable
Ismail and Warrak (2019)	Turnover intention = continuous scale; wellbeing = continuous scale	↓ 5.9%	↓ 9.2%	Linear regression: unstandardised coefficient of – 0.210 for effect of wellbeing on turnover intention
Turnover intention multiplier		3.60%	5.60%	

Table A5. Absence risk multiplier

Study	Original Paper Outcome	Standardised outcome of 10 percentile increase in wellbeing		
		Conservative (0.28 SD)	Optimistic (0.44 SD)	Detailed analysis
Bryan et al. (2021)	Absence = risk of at least one sickness absence; wellbeing = risk of mental health challenges (high/low)	↓ 0.139 (same as 13.9%)	↓ 0.219 (same as 21.9%)	CRE Probit model: 0.0062 increase in absence risk with shift from low to high mental health risk
Bertilsson et al. (2015)	Absence = risk of at least one sickness benefitted day; wellbeing = low/high wellbeing	↓ 0.0356 (same as 3.5%)	↓ 0.056 (same as 5.6%)	Logistic regression: Odds ratio of 1.29 showing higher odds of sickness absence for high relative to low wellbeing group
Colin-Chevalier et al. (2025)	Absence = risk of sickness absence; wellbeing = continuous scale	↓ 0.0365 (same as 3.65%)	↓ 0.055 (same as 5.5%)	Structural equation model: Odds ratio of 0.98 showing 2% lower risk of absence per 1-point increase in wellbeing
Absence Risk Multiplier		↓ 0.0773 (same as 7.7%)	↓ 0.116 (same as 11.6%)	

Annex 2. Data sources and analysis for work outcome multipliers

Participants and Sampling Approach

Participants were employees in the UK who were autistic and/or had ADHD (n = 659), including clinically and self-diagnosed individuals. Participants were recruited via an online access panel, from 6-10th of March 2025. They completed an online survey sent to them via email relating to their perceptions and experiences at work. The survey lasted approximately 20 minutes and participants received a cash incentive.

Table A6. Raw Data for Wellbeing and Support

Support	Wellbeing					
	Very poor	Poor	Fair	Good	Excellent	Total
Insufficient	3	24	19	6	2	54
Somewhat insufficient	5	14	19	24	2	64
Neither sufficient nor insufficient	5	11	32	38	3	89
Somewhat sufficient	0	23	71	122	25	241
Sufficient	0	8	45	86	72	211
Total	13	80	186	276	104	659

**For more information visit: www.braininhand.co.uk
Email: info@braininhand.co.uk
Telephone: +44 (0)1392 247909**

brain in hand

**Brain-in-Hand is a limited company registered in England and Wales (Number 06971006)
Registered Office: Broadwalk House, Southernhay West, Exeter EX1 1TS VAT
Registration Number: 985 3199 69
Copyright 2025 - Brain in Hand Ltd**